Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Rev Sci Instrum ; 93(8): 083902, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050107

RESUMO

The development of new modes at x-ray free electron lasers has inspired novel methods for studying fluctuations at different energies and timescales. For closely spaced x-ray pulses that can be varied on ultrafast time scales, we have constructed a pair of advanced instruments to conduct studies targeting quantum materials. We first describe a prototype instrument built to test the proof-of-principle of resonant magnetic scattering using ultrafast pulse pairs. This is followed by a description of a new endstation, the so-called fluctuation-dissipation measurement instrument, which was used to carry out studies with a fast area detector. In addition, we describe various types of diagnostics for single-shot contrast measurements, which can be used to normalize data on a pulse-by-pulse basis and calibrate pulse amplitude ratios, both of which are important for the study of fluctuations in materials. Furthermore, we present some new results using the instrument that demonstrates access to higher momentum resolution.

2.
Science ; 376(6595): 860-864, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35587968

RESUMO

Superconductivity and charge density waves (CDWs) are competitive, yet coexisting, orders in cuprate superconductors. To understand their microscopic interdependence, a probe capable of discerning their interaction on its natural length and time scale is necessary. We use ultrafast resonant soft x-ray scattering to track the transient evolution of CDW correlations in YBa2Cu3O6+x after the quench of superconductivity by an infrared laser pulse. We observe a nonthermal response of the CDW order characterized by a near doubling of the correlation length within ≈1 picosecond of the superconducting quench. Our results are consistent with a model in which the interaction between superconductivity and CDWs manifests inhomogeneously through disruption of spatial coherence, with superconductivity playing the dominant role in stabilizing CDW topological defects, such as discommensurations.

3.
Phys Rev Lett ; 124(23): 236001, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32603165

RESUMO

Resonant inelastic x-ray scattering (RIXS) provides remarkable opportunities to interrogate ultrafast dynamics in liquids. Here we use RIXS to study the fundamentally and practically important hydroxyl radical in liquid water, OH(aq). Impulsive ionization of pure liquid water produced a short-lived population of OH(aq), which was probed using femtosecond x-rays from an x-ray free-electron laser. We find that RIXS reveals localized electronic transitions that are masked in the ultraviolet absorption spectrum by strong charge-transfer transitions-thus providing a means to investigate the evolving electronic structure and reactivity of the hydroxyl radical in aqueous and heterogeneous environments. First-principles calculations provide interpretation of the main spectral features.

4.
Science ; 367(6474): 179-182, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31919219

RESUMO

Elementary processes associated with ionization of liquid water provide a framework for understanding radiation-matter interactions in chemistry and biology. Although numerous studies have been conducted on the dynamics of the hydrated electron, its partner arising from ionization of liquid water, H2O+, remains elusive. We used tunable femtosecond soft x-ray pulses from an x-ray free electron laser to reveal the dynamics of the valence hole created by strong-field ionization and to track the primary proton transfer reaction giving rise to the formation of OH. The isolated resonance associated with the valence hole (H2O+/OH) enabled straightforward detection. Molecular dynamics simulations revealed that the x-ray spectra are sensitive to structural dynamics at the ionization site. We found signatures of hydrated-electron dynamics in the x-ray spectrum.

5.
Nat Commun ; 10(1): 1756, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30988403

RESUMO

Sub-picosecond magnetisation manipulation via femtosecond optical pumping has attracted wide attention ever since its original discovery in 1996. However, the spatial evolution of the magnetisation is not yet well understood, in part due to the difficulty in experimentally probing such rapid dynamics. Here, we find evidence of a universal rapid magnetic order recovery in ferrimagnets with perpendicular magnetic anisotropy via nonlinear magnon processes. We identify magnon localisation and coalescence processes, whereby localised magnetic textures nucleate and subsequently interact and grow in accordance with a power law formalism. A hydrodynamic representation of the numerical simulations indicates that the appearance of noncollinear magnetisation via optical pumping establishes exchange-mediated spin currents with an equivalent 100% spin polarised charge current density of 107 A cm-2. Such large spin currents precipitate rapid recovery of magnetic order after optical pumping. The magnon processes discussed here provide new insights for the stabilization of desired meta-stable states.

6.
Phys Rev Lett ; 121(13): 137403, 2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30312105

RESUMO

Using ultrafast ≃2.5 fs and ≃25 fs self-amplified spontaneous emission pulses of increasing intensity and a novel experimental scheme, we report the concurrent increase of stimulated emission in the forward direction and loss of out-of-beam diffraction contrast for a Co/Pd multilayer sample. The experimental results are quantitatively accounted for by a statistical description of the pulses in conjunction with the optical Bloch equations. The dependence of the stimulated sample response on the incident intensity, coherence time, and energy jitter of the employed pulses reveals the importance of increased control of x-ray free electron laser radiation.

7.
Nat Commun ; 9(1): 1035, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29515124

RESUMO

"The technical support from SLAC Accelerator Directorate, Technology Innovation Directorate, LCLS laser division and Test Facility Division is gratefully acknowledged. We thank S.P. Weathersby, R.K. Jobe, D. McCormick, A. Mitra, S. Carron and J. Corbett for their invaluable help and technical assistance. Research at SLAC was supported through the SIMES Institute which like the LCLS and SSRL user facilities is funded by the Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-76SF00515. The UED work was performed at SLAC MeV-UED, which is supported in part by the DOE BES SUF Division Accelerator & Detector R&D program, the LCLS Facility, and SLAC under contract Nos. DE-AC02-05-CH11231 and DE-AC02-76SF00515. Use of the Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515."and"Work at BNL was supported by DOE BES Materials Science and Engineering Division under Contract No: DE-AC02-98CH10886. J.C. would like to acknowledge the support from National Science Foundation Grant No. 1207252. E.E.F. would like to acknowledge support from the U.S. Department of Energy (DOE), Office of Basic Energy Sciences (BES) under Award No. DE-SC0003678."This has been corrected in both the PDF and HTML versions of the Article.

8.
Nat Commun ; 9(1): 388, 2018 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-29374151

RESUMO

Magnetostriction, the strain induced by a change in magnetization, is a universal effect in magnetic materials. Owing to the difficulty in unraveling its microscopic origin, it has been largely treated phenomenologically. Here, we show how the source of magnetostriction-the underlying magnetoelastic stress-can be separated in the time domain, opening the door for an atomistic understanding. X-ray and electron diffraction are used to separate the sub-picosecond spin and lattice responses of FePt nanoparticles. Following excitation with a 50-fs laser pulse, time-resolved X-ray diffraction demonstrates that magnetic order is lost within the nanoparticles with a time constant of 146 fs. Ultrafast electron diffraction reveals that this demagnetization is followed by an anisotropic, three-dimensional lattice motion. Analysis of the size, speed, and symmetry of the lattice motion, together with ab initio calculations accounting for the stresses due to electrons and phonons, allow us to reveal the magnetoelastic stress generated by demagnetization.

9.
Phys Rev Lett ; 119(6): 067403, 2017 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-28949638

RESUMO

We report an x-ray photon correlation spectroscopy method that exploits the recent development of the two-pulse mode at the Linac Coherent Light Source. By using coherent resonant x-ray magnetic scattering, we studied spontaneous fluctuations on nanosecond time scales in thin films of multilayered Fe/Gd that exhibit ordered stripe and Skyrmion lattice phases. The correlation time of the fluctuations was found to differ between the Skyrmion phase and near the stripe-Skyrmion boundary. This technique will enable a significant new area of research on the study of equilibrium fluctuations in condensed matter.

10.
Phys Rev Lett ; 117(2): 027401, 2016 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-27447522

RESUMO

X-ray diffractive imaging with laterally coherent x-ray free-electron laser (XFEL) pulses is increasingly utilized to obtain ultrafast snapshots of matter. Here we report the amazing disappearance of single-shot charge and magnetic diffraction patterns recorded with resonantly tuned, narrow bandwidth XFEL pulses. Our experimental results reveal the exquisite sensitivity of single-shot charge and magnetic diffraction patterns of a magnetic film to the onset of field-induced stimulated elastic x-ray forward scattering. The loss in diffraction contrast, measured over 3 orders of magnitude in intensity, is in remarkable quantitative agreement with a recent theory that is extended to include diffraction.

11.
J Phys Condens Matter ; 28(32): 32LT01, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27310659

RESUMO

We report a time-resolved study of the ultrafast dynamics of the magnetic moments formed by the [Formula: see text] states in Sr2IrO4 by directly probing the localized iridium 5d magnetic state through resonant x-ray diffraction. Using optical pump-hard x-ray probe measurements, two relaxation time scales were determined: a fast fluence-independent relaxation is found to take place on a time scale of 1.5 ps, followed by a slower relaxation on a time scale of 500 ps-1.5 ns.

12.
Struct Dyn ; 3(4): 043204, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26958587

RESUMO

We utilized femtosecond time-resolved resonant inelastic X-ray scattering and ab initio theory to study the transient electronic structure and the photoinduced molecular dynamics of a model metal carbonyl photocatalyst Fe(CO)5 in ethanol solution. We propose mechanistic explanation for the parallel ultrafast intra-molecular spin crossover and ligation of the Fe(CO)4 which are observed following a charge transfer photoexcitation of Fe(CO)5 as reported in our previous study [Wernet et al., Nature 520, 78 (2015)]. We find that branching of the reaction pathway likely happens in the (1)A1 state of Fe(CO)4. A sub-picosecond time constant of the spin crossover from (1)B2 to (3)B2 is rationalized by the proposed (1)B2 → (1)A1 → (3)B2 mechanism. Ultrafast ligation of the (1)B2 Fe(CO)4 state is significantly faster than the spin-forbidden and diffusion limited ligation process occurring from the (3)B2 Fe(CO)4 ground state that has been observed in the previous studies. We propose that the ultrafast ligation occurs via (1)B2 → (1)A1 → (1)A' Fe(CO)4EtOH pathway and the time scale of the (1)A1 Fe(CO)4 state ligation is governed by the solute-solvent collision frequency. Our study emphasizes the importance of understanding the interaction of molecular excited states with the surrounding environment to explain the relaxation pathways of photoexcited metal carbonyls in solution.

13.
Nat Mater ; 14(9): 883-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26147844

RESUMO

Static strain in complex oxide heterostructures has been extensively used to engineer electronic and magnetic properties at equilibrium. In the same spirit, deformations of the crystal lattice with light may be used to achieve functional control across heterointerfaces dynamically. Here, by exciting large-amplitude infrared-active vibrations in a LaAlO3 substrate we induce magnetic order melting in a NdNiO3 film across a heterointerface. Femtosecond resonant soft X-ray diffraction is used to determine the spatiotemporal evolution of the magnetic disordering. We observe a magnetic melt front that propagates from the substrate interface into the film, at a speed that suggests electronically driven motion. Light control and ultrafast phase front propagation at heterointerfaces may lead to new opportunities in optomagnetism, for example by driving domain wall motion to transport information across suitably designed devices.

14.
Phys Rev Lett ; 114(15): 156101, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25933322

RESUMO

We show that coadsorbed oxygen atoms have a dramatic influence on the CO desorption dynamics from Ru(0001). In contrast to the precursor-mediated desorption mechanism on Ru(0001), the presence of surface oxygen modifies the electronic structure of Ru atoms such that CO desorption occurs predominantly via the direct pathway. This phenomenon is directly observed in an ultrafast pump-probe experiment using a soft x-ray free-electron laser to monitor the dynamic evolution of the valence electronic structure of the surface species. This is supported with the potential of mean force along the CO desorption path obtained from density-functional theory calculations. Charge density distribution and frozen-orbital analysis suggest that the oxygen-induced reduction of the Pauli repulsion, and consequent increase of the dative interaction between the CO 5σ and the charged Ru atom, is the electronic origin of the distinct desorption dynamics. Ab initio molecular dynamics simulations of CO desorption from Ru(0001) and oxygen-coadsorbed Ru(0001) provide further insights into the surface bond-breaking process.

15.
Nature ; 520(7545): 78-81, 2015 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-25832405

RESUMO

Transition-metal complexes have long attracted interest for fundamental chemical reactivity studies and possible use in solar energy conversion. Electronic excitation, ligand loss from the metal centre, or a combination of both, creates changes in charge and spin density at the metal site that need to be controlled to optimize complexes for photocatalytic hydrogen production and selective carbon-hydrogen bond activation. An understanding at the molecular level of how transition-metal complexes catalyse reactions, and in particular of the role of the short-lived and reactive intermediate states involved, will be critical for such optimization. However, suitable methods for detailed characterization of electronic excited states have been lacking. Here we show, with the use of X-ray laser-based femtosecond-resolution spectroscopy and advanced quantum chemical theory to probe the reaction dynamics of the benchmark transition-metal complex Fe(CO)5 in solution, that the photo-induced removal of CO generates the 16-electron Fe(CO)4 species, a homogeneous catalyst with an electron deficiency at the Fe centre, in a hitherto unreported excited singlet state that either converts to the triplet ground state or combines with a CO or solvent molecule to regenerate a penta-coordinated Fe species on a sub-picosecond timescale. This finding, which resolves the debate about the relative importance of different spin channels in the photochemistry of Fe(CO)5 (refs 4, 16 - 20), was made possible by the ability of femtosecond X-ray spectroscopy to probe frontier-orbital interactions with atom specificity. We expect the method to be broadly applicable in the chemical sciences, and to complement approaches that probe structural dynamics in ultrafast processes.

16.
Nat Commun ; 6: 6397, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25731816

RESUMO

The rate at which atoms and ions within a plasma are further ionized by collisions with the free electrons is a fundamental parameter that dictates the dynamics of plasma systems at intermediate and high densities. While collision rates are well known experimentally in a few dilute systems, similar measurements for nonideal plasmas at densities approaching or exceeding those of solids remain elusive. Here we describe a spectroscopic method to study collision rates in solid-density aluminium plasmas created and diagnosed using the Linac Coherent light Source free-electron X-ray laser, tuned to specific interaction pathways around the absorption edges of ionic charge states. We estimate the rate of collisional ionization in solid-density aluminium plasmas at temperatures ~30 eV to be several times higher than that predicted by standard semiempirical models.

17.
Science ; 347(6225): 978-82, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25722407

RESUMO

Femtosecond x-ray laser pulses are used to probe the carbon monoxide (CO) oxidation reaction on ruthenium (Ru) initiated by an optical laser pulse. On a time scale of a few hundred femtoseconds, the optical laser pulse excites motions of CO and oxygen (O) on the surface, allowing the reactants to collide, and, with a transient close to a picosecond (ps), new electronic states appear in the O K-edge x-ray absorption spectrum. Density functional theory calculations indicate that these result from changes in the adsorption site and bond formation between CO and O with a distribution of OC-O bond lengths close to the transition state (TS). After 1 ps, 10% of the CO populate the TS region, which is consistent with predictions based on a quantum oscillator model.

18.
Phys Rev Lett ; 114(5): 054801, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25699448

RESUMO

The Linac Coherent Light Source has added a self-seeding capability to the soft x-ray range using a grating monochromator system. We report the demonstration of soft x-ray self-seeding with a measured resolving power of 2000-5000, wavelength stability of 10(-4), and an increase in peak brightness by a factor of 2-5 across the photon energy range of 500-1000 eV. By avoiding the need for a monochromator at the experimental station, the self-seeded beam can deliver as much as 50-fold higher brightness to users.

19.
Struct Dyn ; 2(2): 025101, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26798795

RESUMO

Vacuum space charge induced kinetic energy shifts of O 1s and Ru 3d core levels in femtosecond soft X-ray photoemission spectra (PES) have been studied at a free electron laser (FEL) for an oxygen layer on Ru(0001). We fully reproduced the measurements by simulating the in-vacuum expansion of the photoelectrons and demonstrate the space charge contribution of the high-order harmonics in the FEL beam. Employing the same analysis for 400 nm pump-X-ray probe PES, we can disentangle the delay dependent Ru 3d energy shifts into effects induced by space charge and by lattice heating from the femtosecond pump pulse.

20.
Opt Express ; 22(18): 21214-26, 2014 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-25321502

RESUMO

This paper reports novel measurements of x-ray optical radiation on an absolute scale from the intense and ultra-short radiation generated in the soft x-ray regime of a free electron laser. We give a brief description of the detection principle for radiation measurements which was specifically adapted for this photon energy range. We present data characterizing the soft x-ray instrument at the Linac Coherent Light Source (LCLS) with respect to the radiant power output and transmission by using an absolute detector temporarily placed at the downstream end of the instrument. This provides an estimation of the reflectivity of all x-ray optical elements in the beamline and provides the absolute photon number per bandwidth per pulse. This parameter is important for many experiments that need to understand the trade-offs between high energy resolution and high flux, such as experiments focused on studying materials via resonant processes. Furthermore, the results are compared with the LCLS diagnostic gas detectors to test the limits of linearity, and observations are reported on radiation contamination from spontaneous undulator radiation and higher harmonic content.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...